

Profiltafel in Positiv- oder Negativlage Maße in mm

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 185 N/mm², Zugfestigkeit R_m = 205 N/mm²

Maßgebende Querschnittswerte

Blech-	Eigenlast	ast Biegung 1)			Normalkraftbeanspruchung						
dicke				nicht reduz	nicht reduzierter Querschnitt wirksamer Querschnitt 2)				Einfeld- träger	Mehrfeld- träger	
, t	g	I+ eff	l- eff	A _g	i _g	Z g	A _{eff}	i _{etf}	Z _{eff}	L _{gr}	L _{gr}
mm	kN/m²	cm	⁴/m	cm²/m	cr	n	cm²/m	CI	m	m	m
0,70	0,0272	33,5	33,5	8,65							
0,80	0,0311	38,3	38,3	9,88							
0,90	0,0350	43,1	43,1	11,12							
1,00	0,0389	47,9	47,9	12,35							
1,20	0.0467	57,5	57,5	14,82							

Schubfeldwerte

		Grenzzustand	der Tragfähigk	eit	Grenzzu	nzzustand der Gebrauchstauglich				
t	L _R	T _{1,Rk}	T _{crit,g}	T _{crit,I}	T _{3,Rk,N}	T _{R3,Rk,S}	k' ₁	k' ₂		
mm	m		kN/m		kN/	m	m/kN	m²/kN		
Beiwerte	k* ₁ =	-	1/kN	K* ₂ =	- m²/kN	K* ₃ =				

- 1) Wirksame Trägheitsmomente für Lastrichtung nach unten (+) bzw. oben (-).
- ²⁾ Wirksamer Querschnitt für eine konstante Druckspannung $\sigma = R_{_{90,2}}$
- 3) Maximale Stützweiten, bis zu denen das Trapezprofil ohne lastverteilende Maßnahmen begangen werden darf.

Aluminium- Wellprofile und ihre Verbindungen	Anlage 4.1
Wellprofil 55/177	
Maßgebende Querschnittswerte, Grenzstützweite der Begehbarkeit und Schubfeldwerte	

Z67914.20 1.14.1-97/19

Profiltafel in Positiv- oder Negativlage

Nennwert der Spannung an der 0,2 % Dehngrenze $R_{002} = 185$ N/mm², Zugfestigkeit $R_m = 205$ N/mm²

Charakteristische Tragfähigkeitswerte für andrückende Flächenbelastung 1)

Blech-	Feldmo-	o- Endauflagerkraft ^{2) 3)}		Schnittgrößen an den Zwischenauflagern 2) 3) 4) 6)									
dicke	ment	I _a = Aufl	agerbreite	Linea	are Intera	ktion (ε =	: 1)	Lineare Interaktion (ε = 1)					
		l _a = -	l _a = 40 mm	Zwischena	Zwischenauflagerbreite I _{a,B} ≥ 0 r			Zwischenauflagerbreite I _{a,B} ≥			40 mm		
t	M _{c,Rk,F}	$R_{w,Hk,A}$	R _{w,Rk,A}	M ^o _{Rk,B}	R ⁰ Rk,8	M _{c,Rk,B}	$\mathbf{R}_{w,Rk,B}$	M ⁰ _{Rk,B}	R ⁰ _{Rk,B}	M _{c,Rk,B}	$\mathbf{R}_{\mathrm{w,Rk,B}}$		
mm	kNm/m	kl	V/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m		
0,70	2,26	-	4,52	1,47	17,1	1,20	7,93	1,50	22,7	1,28	9,05		
0,80	2,58	-	5,84	1,86	22,4	1,55	10,20	1,92	29,9	1,66	11,70		
0,90	2,91	-	7,18	2,26	27,7	1,90	12,45	2,34	37,1	2,05	14,35		
1,00	3,23	-	8,52	2,65	33,0	2,25	14,70	2,76	44,3	2,43	17,00		
1,20	3,86	-	12,20	3,59	51,2	3,16	21,10	3,82	67,6	3,44	24,40		

Charakteristische Tragfähigkeitswerte für abhebende Flächenbelastung 1) 4) 5)

Blech-	The second secon					Verbindung in jedem anliegenden Gurt 7)							
dicke	ment	Endauf- lagerkraft	L	ineare l	nterakti	on (ε = 1)	Endauf- lagerkraft					
t	M _{c,Rk,F}	R _{w,Rk,A}	M ⁰ _{Rk,B}	R ⁰ _{Rk,B}	M _{e,Rk,B}	$\mathbf{R}_{w,Rk,B}$	$V_{w,Rk}$	R _{w,Rk,A}	M ⁰ Rk,B	R ⁰ _{Rk,B}	M _{c,Rk,B}	R _{w,Rk,B}	$V_{w,Rk}$
mm	kNm/m	kN/m	kNm/m	kN/m	kNm/m	kN/m	kN/m	kN/m	kN/m	kNm/m	kN/m	kN/m	kN/m
0,70	2,26	3,96	1,47	17,1	1,20	7,93	-	36,8	-	-	2,26	-	36,8
0,80	2,58	5,11	1,86	22,4	1,55	10,20	-	42,0	-	-	2,58	-	42,0
0,90	2,91	6,24	2,26	27,7	1,90	12,45	-	47,3	-	-	2,91	-	47,3
1,00	3,23	7,37	2,65	33,0	2,25	14,70	-	52,6	-	-	3,23	-	52,6
1,20	3,86	10,60	3,59	51,2	3,16	21,10	-	63,1	-	-	3,86	-	63,1

- An den Stellen von Linienlasten quer zur Spannrichtung und von Einzellasten ist der Nachweis nicht mit dem Feldmoment $M_{c,Rk,F}$, sondern mit dem Stützmoment $M_{c,Rk,B}$ für die entgegengesetzte Lastrichtung zu führen.
- Für kleinere Auflagerbreiten muss zwischen den angegebenen aufnehmbaren Tragfähigkeitswerten und denen bei 10 mm Auflagerbreite linear interpoliert werden. Für Auflagerbreiten kleiner als 10 mm darf maximal 10 mm eingesetzt
- Bei Auflagerbreiten, die zwischen den aufgeführten Werten liegen, dürfen die aufnehmbaren Tragfähigkeitswerte jeweils linear interpoliert werden.

$$\frac{M_{Ed}}{M_{Rk,B}^{0}/\gamma_{M}} + \left(\frac{F_{Ed}}{R_{Rk,B}^{0}/\gamma_{M}}\right)^{\varepsilon} \leq 1$$

$$\frac{V_{Ed}}{V_{w,Rk}/\gamma_M} \le 0.5$$
: $\frac{M_{Ed}}{M_{c,Rk,B}/\gamma_M} \le$

- 6) Sind keine Werte für $\mathrm{M^0_{Rk,B}}$ und $\mathrm{R^0_{Rk,B}}$ angegeben, ist kein Interaktionsnachweis zu führen
- 7) Bei Verbindung in jedem 2. Gurt müssen die angegebenen Werte halbiert werden.

Aluminium- Wellprofile und ihre Verbindungen Anlage 4.2 Wellprofil 55/177 Charakteristische Werte der Widerstandsgrößen der Profiltafeln Teilsicherheitsbeiwert $\gamma_M = 1,1$

1.14.1-97/19 Z67914.20

Profiltafel in Positiv- oder Negativlage

Nennwert der Spannung an der 0,2 % Dehngrenze R_{p0,2} = 185 N/mm², Zugfestigkeit R_m = 205 N/mm²

Aufnehmbare Durchknöpfkraft Z_{Rk} in kN pro Verbindungselement in Abhängigkeit von der Blechdicke t in mm und dem Scheibendurchmesser d in mm. ^{1) 2)}

	Verbindung	t = 0,70	t = 0,80	t = 0,90	t = 1,00	t = 1,20	t = -
~~	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben ≥ Ø 16 mm gem. ETA-10/0198 oder ETA-10/0200	1,08	1,19	1,31	1,43	2,38	-
	Schrauben ≥ Ø 5,5 mm mit Dichtscheiben ≥ Ø 16 mm gem. ETA-10/0200 und mit Kalotte EJOT Orkan W48 gem. abZ Z-14.4-814	1,08	1,24	1,40	1,55	2,56	-

- Es ist außerdem die aufnehmbare Zugkraft für die Verbindung mit der jeweiligen Unterkonstruktion und für das Verbindungselement selbst zu berücksichtigen.
- ²⁾ Abminderungsbeiwert $\alpha_{\rm E}$ zur Berücksichtigung der Anordnung der Verbindung nach DIN EN 1999-1-4, Tabelle 8.3
- 3) Abminderungsbeiwert α_{M} für Schrauben mit Aluminiumdichtscheiben siehe DIN EN 1999-1-4, Tabelle 8.2
- 4) Abminderungsbeiwert α_L zur Berücksichtigung der Biegezugspannung im angeschlossenen Gurt nach DIN EN 1999-1-4, Tabelle 8.1 (α_L = 1,0 bei Befestigung am Endauflager)

Aluminium- Wellprofile und ihre Verbindungen	Anlage 4.3
Wellprofil 55/177	
Charakteristische Werte der Widerstandsgrößen der Verbindungen Teilsicherheitsbeiwert $\gamma_{\rm M}$ = 1,33	

Z67914.20 1.14.1-97/19